Virtual reality simulation

Indications and perspectives for the technology in the field of dental education

By Dr Susan Bridges, Suzanne Perry & Neil Sridhar Burrow, Hong Kong & Australia

Virtual reality (VR) simulation inevitably conjures up images of futuristic technology, imaginary worlds or complex robotic devices. What it may not initially suggest is the use of virtual technology as a means of training dental students and dentalists, facilitating the development of skills in a safe and relaxed environment.

An increase in demand for simulation units over the last ten to ten years has indicated growing interest from dental schools, suggesting a certain confidence that simulation systems have potential as a recognised form of dental skills training in the future. Using technology inspired primarily from the flight simulation industry, dental simulators are now able to create an environment in which users can practise clinical procedures, such as restorative dentistry, endodontics, periodontal assessment, implant placement and even dental extractions. These systems are a far cry from the first phantom head simulator created in the early 1900s that attempted to represent the oral cavity with a relatively primitive set of upper and lower dental casts mounted on a metal pole (Fig. 1). Although phantom head systems are now the mainstay for undergraduate training, educationalists are becoming more aware of the additional benefits of their own.

Data security: How not to become the next Ashley Madison

By Naz Haque, UK

At the heart of the relationship between a dentist and a patient lies trust and respect. Recent events, such as the Sony or, more currently, the Ashley Madison breach, have brought to public awareness the importance of secular data. As dental practices embrace the digital age and all records and correspondence are ink and paper based, the practice still has a number of responsibilities regarding data security. As dental practices are aware of the additional benefits of their own.

The UK’s Data Protection Act (DPA) occurring on or after 6 April 2010. Clients at Dental Focus expect us to take care of online compliance and provide guidance on keeping up to date and resolving these issues. Make sure your data is secured and protected before it is too late.

Understanding Passive Self-Ligation (The Damon System)

- From a published review of evidence of success through implementation of mechanics to treat even the most difficult cases of orthodontic neglect.
- Evidence-based differences between Damon mechanics and traditional orthodontic mechanics.
- Understanding the Damon System: Part II: Damon self-ligating and efficient orthodontic mechanics.
- Introduction vs. Non-Introduction: looking at the power differences with the ability to deliver the result for the Decision maker.
- Testing the mental models: How the Damon System can reverse the negative results of non-compliance.

Damon System & Mini-screws: Optimised Mechanics – Sophisticated Simplicity – Spectacular Results

- Diagnosis and treatment planning: combining the dynamic Damon System with non-complicated orthodontic mini-screws.
- How to extract and post-orthodontic treatment and maxillary incisors.
- How to optimise the bite morphology with orthodontic class II correction.
- Committee in English: helping class II treatment.
- Vertical control in high-angle patients and anterior open bites.

Clinical Evaluation of Self-Ligating Damon System and the Competition

In addition to the Damon System, the extensive range of Damon System products, including Damon 3, Damon Roth, Damon Smart, Damon Fly and Damon Classic, have created a competitive market. There are numerous options available for orthodontists to choose from, each with its own benefits and drawbacks. It is important for orthodontists to thoroughly research and compare the various systems before making a decision.

By Naz Haque, aka “The Scientist”, is Operations Manager of Dental Focus. He has a background in mobile and network computing, and has experience supporting a wide range of blue-chip brands, from Apple to Korean. As an expert in search engine optimisation, Naz is passionate about helping clients develop strategies to enhance their brand and increase the return on investment from their dental practice websites. He can be contacted at naz@dentalfocus.com.
VR simulation, such as the ability to repeat the same task many times, providing real-time feedback leading to a reduction in supervision and the benefits of students being able to practice in their free time without laboratory supervisors. Other benefits of VR simulators include the reduction of consumable costs incurred with plastic teeth and the elimination of water system management issues, reducing the possibility of water-borne infections such as Legionella. Undoubtedly, the initial cost of the VR simulators is a major deterrent and, with additional concerns regarding possible lack of realism to the clinical situation, it is natural that many suggest the need for more evidence-based research prior to committing to such an investment. In the limited literature on VR dental simulation, studies have been mixed but, in general, are positive about the use of the technology for dental training.

Research has shown that procedural learning on VR simulators may be more effective than with the traditional phantom head and may reduce the number of staff-student interactions without a reduction in the quality of the practical work. In contrast, other research has shown that dental performance may be no better using VR simulation and that some students prefer their training to be on phantom heads. Naturally, further research will be needed to establish the effectiveness of the technology.

What are haptics?

The addition of haptics to VR technology creates a dimension of sensory feedback for the user. The word itself originates from the Greek work haptikos, which means “to touch or grasp”.

There are many examples of haptic simulation in modern-day technology, such as in gaming and the vibration component of a mobile phone. The aim of haptics in many cases, and especially simulation, is to improve the realism of the virtual experience. In dentistry, for example, when carrying out a cavity preparation on a haptic VR simulator, there is a difference in hardness felt when cutting from enamel to dentine, and if the pulp is damaged an instant loss of resistance occurs, producing a realistic sensation of drilling through the floor of the pulp chamber (Figs. 2 & 3).

Naturally, the important question is, does the addition of haptic technology really make a difference when learning using VR simulation? To answer this, we have to drive into surgical research for which a stronger evidence base exists, specifically in the area of laparoscopy. A review of the use of haptics in surgery suggested that the addition of haptics to simulation can reduce surgical errors and is especially beneficial in the early stages of learning a new skill task.

Other studies have shown that the addition of haptics may improve overall performance of surgical skills and may be beneficial when a trainee is first exposed to a clinical situation in dentistry. Small-scale studies of haptic VR simulators suggest that they are at least as good as phantom heads in training undergraduates.

The future of VR simulation in dentistry

Currently, exciting research involving the universities of Hong Kong and Melbourne is looking into gaining solid evidence concerning the use of haptic VR simulation in the dental undergraduate curriculum. By utilising neuroimaging techniques, identification of the traits an expert usually displays can occur, which in turn can be built into training pathways to enhance the effectiveness of procedural learning.

Dental findings have suggested that distinct differences may be apparent in the brains of dental experts and novices during a simulated clinical task when using a dental haptic VR simulator. Further work in this area is to be carried out, with additional investigation into the positioning of haptic VR simulations within a curriculum and considering its effectiveness compared with traditional phantom head training techniques. Already it can be seen that the area of VR in dentistry and especially that of haptic VR simulation is proving an interesting development, offering encouraging prospects for the future skills-based training of dentists. The evidence is limited, however, so, prior to commending this technology as the mainstay of training in dental undergraduate curricula, there is a compelling need to expand the current research base.

This article was published in CAD/CAM International Magazine No.2, 2015

Study finds fundamental misconceptions about dental implants among patients

By DTI

HONG KONG, China: Investigating patients’ knowledge and perceptions regarding implant therapy, a Chinese study has found that an alarming number of participants had inaccurate and unrealistic expectations about dental implants. Moreover, the study determined that only 18 per cent felt confident about the information they had about the treatment.

In the study, the researchers investigated preoperative information levels, perceptions and expectations regarding implant therapy via a questionnaire. Responses from 277 patients were obtained during 2015 in three different locations in China (Hong Kong, Sichuan and Jiangsu).

The analyses established that about one-third of the participants had mistaken assumptions about dental implants. According to the researchers, common misconceptions were that dental implants require less care than natural dentition, implant treatment is appropriate for all patients with missing teeth, dental implants last longer than natural dentition and there are no risks or complications with implant treatment. Overall, younger respondents (<45) and those with higher education (bachelor’s and postgraduate degrees) tended to have more realistic perceptions and lower expectations of the treatment outcome.

When asked about their level of knowledge, 65 per cent of the participants said that they were generally informed about implants, but only 18 per cent felt confident about the information they had. The study, titled “What do patients expect from treatment with dental implants? Perceptions, expectations and misconceptions: A multicenter study”, was published online ahead of print on 23 March in the Clinical Oral Implants Research journal.